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Effective shape and phase behavior of short charged rods
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We explicitly calculate the orientation-dependent second virial coefficient of short charged rods in an elec-
trolytic solvent, assuming the rod-rod interactions to be a pairwise sum of hard-core and segmental screened-
Coulomb repulsions. From the parallel and isotropically averaged second virial coefficient, we calculate the
effective length and diameter of the rods, for charges and screening lengths that vary over several orders of
magnitude. Using these effective dimensions, we determine the phase diagram, where we distinguish a low-
charge and strong-screening regime with a liquid crystalline nematic and smectic phase, and a high-charge and

weak-screening regime with a plastic crystal phase in the phase diagram.
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I. INTRODUCTION

The study of suspensions of nonspherical colloidal par-
ticles started with the experimental works of Zocher [1] and
Bawden er al. [2], and with Onsager’s theoretical work [3]. Tt
has since developed into a very versatile field of research. A
lot of attention has been focused on needle-shaped rods, ei-
ther naturally occurring ones such as viruses like tobacco
mosaic virus or fd virus [2,4,5], or laboratory synthesized
ones such as Boehmite rods [6]. In recent years, however, a
plethora of nonspherical particles have been synthesized that
are not extremely elongated, for example, ellipsoidal colloids
with aspect ratio ~3 [7], colloidal dumbbells [8], or nano-
particles with the shape of a rod, disk, snowman, cube, cap,
or raspberry [9-15]. These particles are often charged when
dissolved in a polar solvent such as water, and hence their
pair interactions involve not only the anisotropic steric short-
range repulsions but also electrostatic long-range repulsions.
The strength of the latter is determined by the charge on the
particle and the range is determined by the Debye screening
length of the solvent [16,17]. For small charges and strong
screening (i.e., high salt concentrations), one expects the
steric interactions to be dominant (if we assume that disper-
sion forces can be neglected). Hence, one can use computer
simulations or theoretical studies of hard anisotropic bodies
[18-23] to obtain an idea of the phase diagram of the system
as a function of concentration. In the case of a high charge or
weak screening (i.e., low salt concentration), however, the
situation is less clear cut. There, the degree of anisotropy of
the electrostatic interactions is not obvious from the outset:
on the one hand one expects the soft screened-Coulomb in-
teractions to wash out the hard-core anisotropy such that the
interactions become effectively more spherically symmetric,
while on the other hand there are the intriguing findings re-
ported, for example, in Refs. [24,25]. The studies in these
papers apply to systems of charged anisotropic particles in a
screening medium. It was found that the electrostatic aniso-
tropy persists to infinitely large distances as the asymptotic
decay of each multipole contribution to the electrostatic po-
tential due to a nonspherical charge distribution is equal
[24,25]. This conclusion is in sharp contrast to the case of a
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charge distribution in vacuum, where the monopole potential
decays more slowly than that of the dipole, as each order
multipole contribution decays slower than the next one does.
In our paper we investigate the interplay between hard-core
and electrostatic interactions for nonspherical particles, for
the relatively simple particle shape of spherocylinders.

It is well established by now that nonspherical colloidal
particles can form a wealth of phases in thermodynamic
equilibrium. Needlelike colloidal rods, for instance, form a
phase sequence I-N-Sm-X upon increasing the concentration
from very dilute up to close packing, where I is the com-
pletely disordered isotropic fluid phase, N the liquid crystal-
line nematic phase with orientational ordering, Sm the
smectic-A phase built from orientationally ordered liquidlike
layers, and X a fully ordered crystal phase [1,3,4,18,26-30].
This phase sequence for colloidal needles is well established
for hard-core interactions [18,26,27]. Also, for softer electro-
static screened-Coulomb repulsions in the case of charged
needles, at least in the regime where the length of the rods is
much larger than the diameter and the screening length of the
electrolytic solvent. This ensures that the effective diameter
of the rods is much smaller than the length [4,31]. By con-
trast, particles with shapes that are sufficiently close to
spherical are not expected to exhibit the liquid crystalline
phases N and Sm due to their small anisotropy. Instead, for
such near-spherical particles one would expect a plastic crys-
talline phase (P) to appear in the phase diagram, residing in
between the isotropic fluid and the fully ordered crystal. The
P phase is characterized by positional ordering on a lattice,
but without long-ranged orientational ordering of the par-
ticles. For instance, a phase sequence /-P-X upon increasing
the concentration has indeed been established in simulations
of short hard spherocylinders and of hard dumbbells with a
length-to-diameter ratio smaller than about 0.35 [18,32,33].
The question we address in this paper concerns the effect of
colloidal charge and ionic screening on the effective shape of
relatively short rods, and on their expected phase sequence
upon increasing the concentration. On the basis of the well
established increase of the effective diameter of charged
needles compared to their hard-core diameter [31], it is to be
expected that high colloidal charges and weak-screening
conditions (i.e., low salt concentrations) lead to a decreased
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anisotropy of short charged rods. Hence, this will lead to a
larger tendency of the system to exhibit a plastic crystal
phase instead of liquid crystalline phases in the phase dia-
gram, even if the hard-core shape would allow for liquid
crystalline equilibrium phases.

Of course, suspensions of charged rods have been exten-
sively studied theoretically before. Many of these studies are
based on Onsager’s second virial theory for hard rods [3],
which is modified and extended to take into account the ef-
fects of charge and screening on the isotropic-to-nematic
transition [31,34-38]. Some of these studies, for example,
those of Refs. [3,31,34], focus on the needle limit in which
the rod length is very large compared to the screening length.
In this limit, only the diameter is affected by the electrostatic
effects, but in such a way that the effective geometry of the
rod remains needlelike. In Refs. [35,36] rod lengths of the
order of (or larger than) the Debye length are considered,
at the expense, however, of ignoring many of the prefactors
such that the theory is essentially a scaling theory. Interest-
ingly, this scaling theory predicts nematic-nematic coexist-
ence in some parameter regime, which was later confirmed
in Ref. [37]. This coexistence regime is characterized by a
small rod charge density, such that the effective geometry of
the rod is no longer needlelike. Another limit that was stud-
ied in detail is the limit of weak electrostatic interactions,
which naturally leads to a perturbative description
[37,39,40]. These schemes are very successful at describing
the effective (non-needlelike) geometry that shows up in the
angular dependence of the second virial coefficient. Another
very interesting effect was identified in Ref. [38], where the
correlation free energy of the many-body system of charged
rods and counterions was calculated, resulting in an en-
hanced tendency to orientational ordering and also the pos-
sibility of nematic-nematic coexistence. With the notable ex-
ception of Ref. [40], however, most of these works on
charged rods focus on the isotropic and nematic phases and
hence, implicitly, on rods which are sufficiently elongated to
give liquid crystalline phases at all.

In this paper we take a slightly different perspective. We
explicitly calculate the orientation-dependent second virial
coefficient of rather short charged rods numerically, for col-
loidal charges and screening lengths that vary over many
decades. Such calculations, in which we use expansions in
spherical harmonics, do not require only the asymptotic far-
field expressions of the multipoles (such as considered in
Refs. [24,25]), but in fact their full distance dependence.
From the resulting second virial coefficient, we determine an
effective hard-core length and diameter. Subsequently, we
use these—in combination with the published hard-core
phase diagram [18]—to determine the expected phase se-
quence upon increasing the concentration. This scheme is too
crude to distinguish subtleties such as whether or not there is
a nematic-nematic coexistence regime or to what extent the
isotropic-nematic phase gap is affected. However, it is sup-
posed to indicate reliably whether liquid crystalline (N and
Sm) or plastic crystal (P) phases are to be expected in be-
tween the isotropic (I) and crystalline (X) phase. We focus on
the case where the rod length is of the order of the screening
length or smaller, in contrast to most of the previous theoret-
ical work. This is the regime where the crossover from N and
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Sm to P is expected to occur. In the limit where the rod
length is small and the hard-core interactions are important,
we give a simplified theoretical description that turns out to
be in remarkable agreement with the numerical results. As
our numerical approach relies on an expansion in spherical
harmonics of the effective pair interaction between two rods,
it leads to explicit but involved expressions. We present
some of the mathematical technicalities of the derivation of
these expressions in the Appendixes.

II. MODEL

We consider a system of identical charged colloidal rods
suspended in an electrolyte solvent of dielectric constant e,
Debye screening length 7!, and Bjerrum length I
=e?/(4mekyT), at temperature 7. Here e is the elementary
charge, and kg is the Boltzmann constant. The rods are as-
sumed to have the shape of a spherocylinder consisting of a
cylinder of length L and diameter D capped by two hemi-
spheres also of diameter D. The rods have a fixed charge,
which we treat here as an (effective) line-charge density e\
distributed homogeneously on the axis of the cylinder. We
are interested in the effective pair potential V(r;®,®') be-
tween two rods with orientations ® and @' at a center-to-
center vector r, thermally averaged over the degrees of free-
dom of the electrolyte solvent (characterized by «~! and Ig).
In the spirit of Derjaguin, Landau, Verwey, and Overbeek
(DLVO), we assume that the effective pair potential consists
of steric hard-core repulsions and electrostatic screened-
Coulomb interactions between segments of the line charge of
the two rods. We ignore short-ranged van der Waals attrac-
tions (i.e., we assume the particle and the solvent to be index
matched or that the dispersion forces are canceled by steric
or charge stabilization). Within these approximations the ef-
fective pair potential can be written as

e for overlapping rods,
BV(r;é),cﬁ’)={ ) ppimne

BV.(r;d,»") otherwise,
(1)
where B~'=kyT, the overlap refers to the hard-core repul-
sions, and the electrostatic interaction potential is given by

+L/2 +L/2
BV (r;d,d") = Ig\> di di
-L/2 -L/2

exp[— klr+1'®d" - 13)|]

r+1'0" - 10|
2)

The integration variables / and [’ play the role of coordinates
running along the cylinder axis of each of the two rods, from
one end of the cylinder to the other end. In the long-rod
limit, L/D>1 and kL>1, one can replace the integration
domains in Eq. (2) by the full real axis, together with the
constraint that the cylinder axes are in “cross configuration”
(i.e., the axes intersect when projected onto the plane parallel
to both axes). Otherwise, the potential vanishes. One then
easily shows that V, only depends on the shortest distance
and the relative angle between the two rods [3,31,37]. Here
we focus on shorter rods, for which this simplification does
not apply. In the Appendixes we derive systematic series
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expansions in spherical harmonics to describe the angular
and position dependence of V, explicitly, focusing on rods
that are rather short compared to the Debye screening length
(which sets the range of the electrostatic repulsions). More
specifically, the expansion of the angular dependence is trun-
cated and we consider each term as an expansion in «L up to
fourth order (see Appendix E). We compare the result with
the large-«L limit.

The present model can be characterized by a few dimen-
sionless combinations. In the limit of uncharged rods (A
=0), the aspect ratio L/D of the hard-core dimensions is of
primary importance. However, for the charged rods of
present interest, the ratio kL (of the hard-core length to the
Debye screening length of the solvent) gives more informa-
tion on the interaction anisotropy. The ratio «D is relevant as
a measure of ionic strength. Dimensional inspection of the
expression in Eq. (2) shows that the strength of the electro-
static interactions is determined by the dimensionless (square
of the) line charge density

2
q= B 3)
K
These dimensionless combinations can span quite a range of
numerical values in experimental systems. For instance, for
fd virus suspended in water one finds [5] L/D>100, kD
=(0.1-1 and ¢g=70-700, and recently synthesized silica
dumbbells in oily solvents [41] are best characterized by
L/D=1, kD=1, and ¢==10?%. Short (double stranded) DNA
chains have kD=0.1-1 and ¢=0.1-10, while their length
can be varied by the number of base pairs included in the
sequence. These chains can be characterized as rigid rods up
to the persistence length corresponding to L/D==50. More-
over, present-day synthesis techniques allow for the tuning of
surface charge, in principle at least, from essentially vanish-
ing to extremely high. This is achieved, for example, by
using different coatings with varying degrees of ion dissocia-
tion of the surface groups. It is therefore of interest to inves-
tigate the thermodynamics of the present model over a wide
range of parameters.

III. THERMODYNAMICS AND EFFECTIVE DIMENSIONS

With the pair potential specified by Egs. (1) and (2), and
with an explicit scheme to evaluate it as explained in the
Appendixes, we can study the macroscopic properties of sus-
pensions of these charged rods. In principle, we do this as a
function of concentration, for various ¢, kD, and L/D. Here
we circumvent the complexity of the full statistical-
mechanical calculation of free energies and phase diagrams
of the system at hand. We do this by mapping the second
virial coefficient of the charged spherocylinders of interest
onto that of hard spherocylinders with an effective cylinder
length L. and an effective diameter D that we will calcu-
late below. We then presume that the phase diagram of the
system of charged rods follows from that of the effective
hard-rod system, which we take from published computer
simulation data [18]. It is well known from these and
follow-up simulations of hard rods, as well as density func-
tional theory [26,27], that this system exhibits a sequence of
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FIG. 1. The effective excluded volume «’E, as a function of the
angle vy between the two rod orientations, for different values of the
charge parameter g. We used the parameter values kL=1 and D
=0.01 (such that L/D=100).

phase transitions upon increasing the concentration that
strongly depends on the aspect ratio L/D: sufficiently elon-
gated hard rods with L/D>3.7 have an isotropic-nematic-
smectic-crystal (/-N-Sm-X) phase sequence, sufficiently
short hard rods 0 <L/D < 0.35 show an I-P-X sequence with
P a plastic crystal, and in between there are two more re-
gimes in which the N and P phase, respectively, no longer
appear in the phase sequence. Below we determine how the
analogous crossovers between these regimes of the effective
system, as determined by L./ D, depend on the parameters
q, kD, and L/D.

A key ingredient of our calculation is the effective ex-
cluded volume E(®,®") of two charged rods with orienta-
tions @ and ®’', defined as

E(0,0") = f dr(1 —exp[- BV(r;o,o")]), (4)

where the pair potential between the rods is given in Egs. (1)
and (2). Note that E(®, ®") is in fact twice the corresponding
second virial coefficient, and that the nomenclature “effec-
tive excluded volume” stems from the fact that it reduces to
the actual excluded volume of the pair in the case of purely
hard-core interactions. On the basis of symmetry arguments
one easily checks that the angular dependence of E(®,®’) is
in fact only through the angle y=arccos(®-@’) between the
cylinder axes of the two rods. In Fig. 1 we show this y
dependence of E for rods characterized by «L=1 and «D
=0.01 (so L/D=100 and weak screening), for several charge
parameters ¢ ranging from ¢=0 (uncharged) to ¢=0.01
(fairly charged). The results of Fig. 1 stem from a combina-
tion of numerical and analytic procedures explained in detail
in the Appendixes. These involve a fivefold integration: over
the contour of the rods / and !” in Eq. (2), and the center-to-
center separation vector r in Eq. (4).

The key observations of Fig. 1, which is typical for many
system parameters, are that for increasing ¢ the effective
excluded volume becomes (i) less anisotropic, and (ii) larger
in magnitude. Moreover, for all ¢ the effective excluded vol-
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ume is larger for perpendicular orientations than for parallel
ones. Qualitatively, and in fact quantitatively for many pa-
rameters, this behavior is identical to that of hard spherocyl-
inders of effective length L. and diameter D, for which
the excluded volume is given by [3]

ooy 4w .
Vegr( @, @) = ?Dgff + 271'Lefngff"‘ 2L§ffDeff siny.  (5)

In principle one can fit the functional form of Eq. (5) to the
numerical results such as those of Fig. 1 to determine the
effective hard-core dimensions L.y and Dy for given
charged-rod parameters. However, instead of fitting the full
angular dependence numerically, it is more convenient to
match the isotropically averaged effective excluded volume
and the parallel one, given by

1 . P 1 (™ )
Ei= —(477)2 f dwfdw E(d,d )=5f0 dy sin yE(y),
(6)

Ej=E(®,0)=E(y=0), (7

to the values for spherocylinders with effective hard-core
dimensions L.g and D

4m 4 2 T
Viso = ?Deff + 27 LoD + ELeffDefﬁ (8)

4
Vi= ?szf +27Li DYy, )

respectively. This procedure yields the effective hard-core
dimensions

3E 1/3
Dy = 4—”(1+3A—V3A(2+3A)) , (10)
o
Lyt 22—
= —2A + ZV3A(2 +34A), (11)
D 3

where we used, for notational convenience, the dimension-
less anisotropy parameter A defined as

(12)

It turns out that inserting L.g and D, as obtained from Eqgs.
(10)—(12) into Eq. (5) gives an angular dependence that is in
very good agreement with the numerically obtained effective
excluded volume of charged rods.

It is also interesting to compare our numerical results with
analytic expressions that are valid in the limit where L/D
>1 and kL > 1, as obtained by Stroobants et al. [31]. In this
needle limit the effective excluded volume is given by
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E..(y) =2L*k" sin y[ Ye+1In27mq —Insin y

+F<O,27Tq expl— KD]):|’ (13)

sin y

where y;=0.577 is the Euler-Mascheroni constant and
where the incomplete gamma function (or exponential inte-
gral) is defined by

I'a,x) = f dyy*" exp[- y]. (14)

From this expression—using the Onsager limit Vi, .
=(7/2)L? D, for the isotropically averaged excluded
volume—the effective diameter can be calculated

1
KDegr oo = yg+In2mg+1n2 — 5

2 (7 21rq exp[— kD
+—f dy sin? yF(O,M). (15)
wJ, sin y

The effective length is taken equal to the rod length Leg ..
=L.

IV. NUMERICAL RESULTS

Calculations such as those of Fig. 1 are reasonably accu-
rate for values of «L roughly up to 2. For higher values the
applied approximations become poor, such that for kL=3
the calculations become even qualitatively unreliable for
many of our parameters. For this reason we restrict most of
our attention to the regime where xL<?2.

In order to assess the accuracy of our calculations, we
compare some of the results of our calculations with those

obtained from more extensive numerical integration
11.45
114} < ]
11.35 | 1
m p
e =13 (MC) +
11.3 + =5 -
M=9
M=13
11.25 M=21 -
Analytic R
1 ¥
11.2

T
2
y

FIG. 2. The effective excluded volume «°E, as a function of the
angle y between the rod orientations, calculated using different nu-
merical schemes (see text), involving M discrete charges, Monte
Carlo (MC) integration, and the present analytic approach. We used
the parameter values kL=1, kD=0.25 (such that L/D=4), and ¢
=1.
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FIG. 3. The effective diameter kD, as a function of the rod diameter «D for (a) kL=1 and different values for the charge parameter ¢;
(b) g=10 and different values for the rod length L. The rod dimensions are scaled by the screening length x~!. The thin solid line is a guide
to the eye, representing the hard-core limit D s=D. The small solid circles give the values for kD=0 from the numerical calculations. The
larger open circles are obtained by the approximation given in Eq. (17).

schemes. One is given by the same spatial integration
scheme as before, but with the (effective) line-charge density
replaced by a discrete charge distribution. The rod charge is
represented by an odd number of charge units (M=2N+1)
distributed evenly on the cylinder axis, where one unit is
always located on the center of the axis, and two units are
always located on the two end points of the axis. The latter
are of magnitude e\L/(4N), while all others are of magni-
tude eNL/(2N). This ensures that the total charge is eNL and
the continuum limit N—cc yields the correct homogeneous
line charge. The other scheme uses the same discrete charge
density as described above, but uses a Monte Carlo (MC)
scheme to perform the integration. This scheme is denoted
by the pluses in Fig. 2. The agreement between the results
obtained from the different schemes, as shown in Fig. 2, is
excellent for M =13, particularly when considering that the
shape of the effective excluded volume differs significantly
from the hard-core case for these parameters. Therefore, we
conclude that our calculation correctly predicts the angular
dependence of the effective excluded volume of short
charged rods.

In the previous section, we have shown that the angular
dependence of the effective excluded volume can be used to
calculate the effective rod dimensions L.y and D g—from
the values of E; and E |, —by applying Egs. (10)—(12). Figure
3(a) shows the numerically calculated effective diameter as a
function of the real diameter for kL=1 and a range of charge
parameters g. Figure 3(b) shows the same function, but then
for ¢g=10 and a range of rod lengths L. Note that all (effec-
tive) rod dimensions are expressed in units of the screening
length. In Fig. 3(b) the needle limit kL > 1, given by Eq.
(15), is plotted for comparison. Both graphs clearly reveal
two regimes,

D, for D<D,,
Degr = (16)

D for D> D..

These can be identified as an electrostatic regime at small kD
(weak screening) and a hard-core regime at high enough «D

(strong screening). In the hard-core regime, the effective di-
ameter equals the hard-core diameter, while in the (weakly
screened) electrostatic regime the effective diameter satu-
rates to a plateau value D.. This electrostatic effective diam-
eter depends on g and kL, and increases with increasing g
and kL. Also, it is (much) larger than the hard-core diameter
due to the (strong) rod-rod repulsions. Values of the electro-
static effective diameter are included in Fig. 3, where the
small solid circles represent values obtained from numerical
calculations for kD=0. The larger open circles represent the
following simple approximation for D,.

In the short-rod limit, we can treat the double layer
around the rod as spherically symmetric, with an effective
point charge e\L in the center, such that also the pair poten-
tial is spherically symmetric. This gives A=0, and hence
from Eq. (10), for large enough ¢ (or small enough «D), we
obtain the electrostatic effective diameter from the simple
expression

kD, = {3[06 dxx2<1 —exp{—qkszmD}m.
0 X
(17)

This approximation is given in Fig. 3 by the larger open
circles. Both graphs show good agreement for kL <1 and all
values for ¢. Figure 3(b) also shows that the regime
kL <2—which is reliably accessible with our truncated nu-
merical scheme—evolves smoothly to the needle-limit L
>1 of Stroobants et al. [31]. The curve for kL=3 shows
some signatures of the numerical instabilities we encounter
for larger kL.

In a similar fashion we can also study the effective length
L of the rods. Figure 4(a) shows results of numerical cal-
culations of the effective rod length for kL=1 and a range of
charge parameters ¢. Figure 4(b) is the result for ¢g=10 and a
range of rod lengths L. The rod dimensions are expressed in
units of the Debye length, whereas L. is expressed in units
of the hard-core length. We distinguish again two asymptotic
regimes, the strong-screening (hard-core) regime xD> 1
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FIG. 4. The effective length L./ L as a function of the rod diameter «D for (a) kL=1 and different values for the charge parameter ¢;
(b) g=10 and different values for the rod length «L. The rod diameter is scaled by the screening length x~! and the effective length is scaled

by the rod length L.

where L.=L, and the weak-screening (electrostatic) regime
kD <<1 where L.y reaches a plateau value that depends on g
and L. Note also that L.;<L which is perhaps unexpected
at first sight. Naively, one could expect the effective length to
increase with increasing effective excluded volume. How-
ever, as Sato and Teramoto [34] pointed out, the effective
length decreases with increasing rod charge density because
of end effects. Thus, the increase of the effective excluded
volume—due to the increase of the rod charge density—is
purely caused by the increase of the effective diameter.
Moreover, this increase balances the decreasing in effective
length such that the total effective particle length L.+ D¢
does increase with increasing rod charge density. Inspection
of Fig. 4(a) also reveals numerical (convergence) problems
for =100 at kD=1, where L.y sharply drops and rises
before reaching the hard-core limit L.=L. This is in fact
only a minor problem in practice, as it only occurs in the
regime where L/ D.¢=<0.1. There, the anisotropic contribu-
tion to the effective excluded volume is much smaller than
the isotropic part. Upon approach of the needle-limit L
>1, see Fig. 4(b), we find that L.y approaches L for all
values of kD, as expected.

V. PHASE BEHAVIOR

We have determined the effective length and diameter of
charged rods, by mapping their orientation-dependent second
virial coefficient onto that of effective hard rods. Subse-
quently, we also study the effective length-to-diameter ratio
Lt/ Doy In Fig. 5 we show this effective aspect ratio as a
function of the rod charge for kL=1 and a range of rod
diameters «kD. All curves with kD >0 essentially decrease
from their maximum value—the hard-core aspect ratio
L/D—towards the curve given by kD =0. This indicates that
the effective dimensions of charged rods become indepen-
dent of the hard-core diameter for large charge parameters,
where we enter the electrostatic regime. Also, since the ef-
fective aspect ratio for kD=0 is a decreasing function for
large g, we see that the charged rods essentially behave as
charged spheres upon increasing the charge above a certain
value.

Moreover, Fig. 5 reveals a local maximum for very small
kD, in the regime where g == 1. This effect can be understood
by considering the electrostatic regime for small charge pa-
rameters ¢g. Equation (11) shows that the effective aspect
ratio is governed by the dimensionless anisotropy parameter
A, which is defined in Eq. (12). In the electrostatic regime,
this anisotropy can be shown—up to first order—to be pro-
portional to g. The reason for this is that the linear approxi-
mation of the effective excluded volume is orientation inde-
pendent [37]. Therefore, the difference between the
isotropically averaged and parallel values is of second order
in g, whereas the parallel value itself is of first order. The
effective aspect ratio is of order VA, and thus increases as \g.
Conversely, for g=1 the effective length is more or less
constant, and the effective aspect ratio decreases again due to
the increase of the effective diameter.

The horizontal dotted lines in Fig. 5 indicate the crossover
values (0.35, 3.5, and 3.7) for regimes with different phase

100

T T T T

: : : 5T ——
[-N-Sm-X D =01  ——e
=0.0
0.0
I-Sm-—X
)
Q
~
8
~
0.01 . . . . . . i
1074 1072 100 102 104
q

FIG. 5. The effective aspect ratio L./ Degr as a function of the
charge parameter g for kL=1 and different values for the rod diam-
eter «D. Different—possibly coexisting—phases are associated
with a certain range of (effective) aspect ratios. See the text for an
explanation of the abbreviations and the boundary values.
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FIG. 6. Boundary lines for given values for the effective aspect ratio L/ Dogr. See the text for an explanation of the abbreviations of the
different regime labels. The points are results of the numerical calculations, and the lines are given by a simplified theory. We fix (a) xL

=1, and (b) L/D=20, respectively.

sequences. The values for these aspect ratios are taken from
simulation results of hard-spherocylinder systems by Bolhuis
and Frenkel [18]. These simulations consist of explicit free-
energy calculations of coexisting phases, where the most di-
lute phase is always given by an isotropic fluid (7), and the
most dense phase by a fully ordered crystal (X). Depending
on the aspect ratio, different phases were found in between
these two phases. For aspect ratios exceeding ~3.7 the phase
sequence /-N-Sm-X was found upon increasing the density.
Here, the N and Sm denote the nematic and smectic-A liquid
crystalline phases, respectively. Somewhat shorter rods, with
an aspect ratio in the narrow regime between ~3.5 and
~3.7, can still form a smectic-A but no longer a nematic
phase, and hence have a phase sequence /-Sm-X. Even
shorter hard rods, with an aspect ratio in between ~0.35 and
~3.5 cannot form a thermodynamically stable smectic-A
phase, and thus crystallize directly into a fully ordered crys-
tal from the isotropic fluid, yielding a phase sequence /-X.
Very short hard rods, with an aspect ratio smaller than
~0.35, exhibit a plastic (P) crystal phase, such that the phase
sequence is I-P-X. The plastic crystal phase is characterized
by orientational disorder, but has translational order as in a
crystal phase [18,32]. This regime arises naturally in the case
that «L is small. Then, such a crystal forms because of the
essentially isotropic long-range repulsive interactions, but
the competition with entropic effects prevents the rods from
aligning.

We use the mapping of the charged-rod system onto the
effective hard-rod system to give an indication of the phase
sequence of systems of charged rods as a function of the
parameters L, kD (or L/D), and g. For instance, from the
curve for kD=1 in Fig. 5, we see that the effective aspect
ratio never exceeds unity for any ¢. This excludes the possi-
bility of a nematic or smectic-A liquid crystal phase. The
curve starts off at its maximum (in the limit where g—0),
where the effective aspect ratio equals the hard-core aspect
ratio L/D=«kL=1. It crosses the value L./ D.x=0.35 at g
~12.35, such that a sufficiently large rod charge density al-

lows for a plastic crystal phase. Similarly, for «D=0.1
(which corresponds to L/D=10), we find all four phase se-
quences upon increasing g.

By determining the intersections of the effective aspect
ratio with the crossover values of the hard-rod system, we
construct “phase diagrams” indicating the different regimes.
In Fig. 6 we present two examples of such diagrams in the
plane spanned by ¢ and «D. In Fig. 6(a), we fix kL=1, such
that the horizontal axis could read D/L as well. In Fig. 6(b)
we fix L/D=20, such that the change in «D physically cor-
responds to a change in salt concentration (while keeping the
particle dimensions fixed). The symbols denote the crossover
values for the effective aspect ratio as determined from our
numerical data (such as presented in Fig. 5). The lines are
based on an approximate theoretical model to be discussed in
Sec. VI

Both diagrams in Fig. 6 show that rods with sufficiently
high surface charge density always show the /-P-X sequence.
This is due to the essentially spherical nature of the effective
shape of highly charged rods. The limit of uncharged rods is
determined by the hard-core sequence that corresponds to
L/D. The I-N-Sm-X regime at fixed L in Fig. 6(a) is com-
pletely bounded. First, by a hard-core regime when «D
=0.27, where the liquid crystal phases cannot exist even for
q=0 because L/D=3.7. Second, by an electrostatic regime
in the weak-screening limit of small xD, where the rods
effectively behave as spheres since D> L. Conversely,
the trends displayed for fixed L/D in Fig. 6(b) are mono-
tonic, with an /-N-Sm-X regime that extends to higher ¢ with
increasing «D.

VI. A SIMPLER MODEL

For small values of the effective surface-charge density,
we found that the electrostatic contribution to the effective
excluded volume is essentially isotropic in nature. This
means that the anisotropic effects are primarily due to the
hard-core anisotropy (as apparent from Fig. 1), such that
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LDy = L?D. (18)

On this basis, we propose here a simple model, which turns
out to describe our numerical findings with remarkable accu-
racy. This model introduces a “spherical approximation” of
the electrostatic contribution to the effective excluded vol-
ume, which involves the orientation-dependent diameter

D(%). The volume of a sphere of this diameter is equal to the
hard-core excluded volume of a pair of rods

Ao _ 4
{D(W - ?771)3 +2mLD? +202Dsiny.  (19)

We approximate the effective excluded volume by the value

for a charged sphere of diameter D(y) and an effective sur-
face charge that equals the total amount of effective charge
on the rods

e}

E(y)=?5(7)3+477f dr

D(y)
exp[—
><r2(l —exp[—qK2L2M]>. (20)
Kr

Note that the only orientation dependence of the electrostatic
contribution to this effective excluded volume (i.e., the sec-

ond term) comes from the integral boundary D(y). To calcu-
late the effective dimensions, we only need the parallel and
isotropically averaged values of the effective excluded vol-
ume. In the parallel case (y=0) this value is readily calcu-

lated
_ 4w, B 5 ,exp[— k7]
Ey=—Dj+4m| drri{l-exp|-—gk’L"——— |/,
3 D, Kr
(21)
where
da_, 4
%Dﬁ - ?7703 +27LD>. (22)

The isotropically averaged value can be calculated numeri-
cally by using expression (20). However, we approximate it

by the value for a charged sphere of diameter D;, (using the
same total effective charge), which is taken from the isotro-
pic average of the hard-core excluded volume

4w, 4
D = Ipd s 2mlD? + — 17D, (23)
3 3 2

This approximation yields the simple expression

_ 4 “ exp[—
Eiso=—77D3 +4'n'f drrz(l—exp{—qKZLZMD.

30" KT

D

iso

(24)

With our explicit expressions (21) and (24), we evaluate the
effective dimensions from Egs. (10) and (11) as before. The
resulting crossover values of the hard-rod system are shown
by the curves in Fig. 6, and are in very good agreement with
the numerical calculations (denoted by the symbols). The
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key to this remarkable accuracy lies in the fact that the an-
isotropic electrostatic contributions are relatively unimpor-
tant, because the rod length is small with respect to the
screening length (i.e., kL <2). Thus, our simple model ac-
counts for the hard-core anisotropy correctly, as well as for
the isotropic electrostatic contribution.

In a sense, this theoretical description can be viewed as a
kind of perturbation theory, where we expand the pair poten-
tial as a function of L. The hard-core repulsion represents
the zeroth order. The lowest-order contribution to V, is qua-
dratic in «L and independent of rod orientations. Also, it
happens to correspond to the interaction potential of two
point charges eNL. If we plug this approximation of
V(r;®,®") into the expression of the effective excluded vol-
ume [given by Eq. (4)], we obtain an expression where the

integral boundary D is still a function of both the angle be-
tween the rod orientations and the direction of the center-to-
center separation vector r. In fact, it is given by the distance
where the rods touch, given a certain orientational configu-
ration. By setting this overlap diameter to a value that is
independent of the orientation of r, but still respects the total
hard-core excluded volume, we effectively neglect its depen-
dence on kL. This choice is justified by the fact that (for
small kL) the size of the double layer around the particles is

larger than the variations in the overlap diameter D. That is
why our simple theoretical description can be interpreted as a
perturbation theory of a hard-rod reference system with an
(almost) isotropic electrostatic contribution. Unfortunately, it
completely fails to describe the anisotropic effects in the
electrostatic regime. In this regime the anisotropic details of
the electrostatic contributions do become important com-
pared to the hard-core contributions.

VII. DISCUSSION AND CONCLUSION

The numerical results presented in this paper give access
to a part of the parameter space where there is a large differ-
ence between the effective length and the real length. In this
regime, one cannot hope that the theory of Stroobants et al.
[31] gives any accurate results, as this is based on the needle
limit where L ;=L. The perturbation theory of Chen and
Koch [37] breaks down for most of our parameter values.
This is because it is based on small charges, and thus fails to
describe the effect of large rod surface-charge densities.
Also, this theory is not accurate for large differences between
the effective and hard-core diameter.

In Fig. 7(a), we show results of numerical calculations of
the effective rod length as a function of the hard-core length,
for kD=0.1. Note that again the effective length is always
smaller than (or equal to) the hard-core length. Also, in ac-
cordance with the results from Fig. 4, there is a hard-core
regime for small values of the charge parameter ¢, as well as
for small values of the rod length L, for which the total
amount of effective rod charge is small. On the other hand,
there is an electrostatic regime. In Fig. 4, this was shown to
be the case for decreasing values of D, where the plateau
value (i.e., the electrostatic length) depends on ¢ and L.
However, from Fig. 7(a), it can be seen that this electrostatic
length depends mostly on the rod length «L, and not really
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FIG. 7. (a) The effective length kL. as a function of the rod length «L for kD=0.1 and different values for the charge parameter g. The
thin solid line represents the needle or hard-core limit, where L.s=L. (b) The effective diameter xD.s as a function of the rod charge
parameter ¢ for kD=0.1 and different values for the rod length L. The (effective) rod dimensions are scaled by the screening length x!.

on the charge parameter ¢, as long as either g or <L is large
enough. Furthermore, the effective length is “wedged” in be-
tween the electrostatic length and the hard-core length,
where the electrostatic length approaches the hard-core
length in the needle limit («L>1).

Unfortunately, there is no analytic theory yet that de-
scribes our numerical results for this electrostatic length as
a function of kL. Therefore, it would be worthwhile to
gain new insight in the effect of electrostatics on the effec-
tive rod length for intermediate xL—neglecting hard-core
interactions—in the case of large rod charges. In this regime,
however, the angular dependence of the effective excluded
volume is different from that of a hard spherocylinder. Visual
inspection of Fig. 2 reveals this difference for small angles.
Probably, the effective shape resembles more a hard ellipsoid
of revolution, for which it is know that there is no stable
smectic phase [42]. Thus, one can claim that the existence of
a stable smectic phase is questionable in this regime. On the
other hand, in the parameter regime that we focused on in
this paper this subtlety is not directly relevant. The part of
the diagram of phase sequences that shows a smectic phase is
well described by the simplified model in which the aniso-
tropy of the effective excluded volume purely stems from the
hard-core interactions. In this case, the increase of ¢ leads to
such a strong increase in the isotropic contribution to the
effective excluded volume that the smectic phase disappears
from the sequence. This happens before the onset of any
significant change in the effective shape.

Additionally, Fig. 7(b) shows results of numerical calcu-
lations of the effective diameter as a function of the charge
parameter g. For g=1, there is a smooth transition to the
theoretical needle limit of Ref. [31], where xL>1. Con-
versely, this is not the case for g =<1, due to the fact that the
approximations leading to Eq. (15) do not give the correct
effective excluded volume for small values of ¢ and (nearly)
parallel rods. More investigations need to be made into this
regime.

In conclusion, we have numerically studied the second
virial coefficient of short charged rods dispersed in an elec-
trolyte, presuming pairwise screened-Coulomb interactions
between the line-charge segments of the rods. The control

parameters of interest are the hard-core length L and diam-
eter D, the Debye screening length of the medium «~!, and
the charge parameter g. The main resulting quantities are the
effective diameter D and length L. of the rods. By a map-
ping onto an effective hard-core system—for which the se-
quence of phases between the dilute isotropic phase and the
dense crystalline phase is known for all aspect ratios—we
predict the relations between control parameters and the ex-
pected phase sequence explicitly. We have also constructed a

simplified model, based on the diameter D(7y) of Eq. (19),
which reproduces the numerical results accurately at the ex-
pense of much less computational effort. This model is par-
ticularly successful in the regime of large effective aspect
ratios (Lgg/ Degr™> 1) and small ratios of the rod length to the
screening length («L<1).

An important result of this work is that highly charged
short rods at low salt concentrations (i.e., at strong Coulomb
couplings) have a strong tendency to form plastic crystals
upon compression. The plasticity stems from the large effec-
tive diameter, which make the rods behave essentially as
inflated repulsive spheres with only small nonspherical inter-
actions that are too weak to cause orientational ordering in
the crystalline phase. This finding could be important in the
study of silica or gold nanorods, that have reasonably large
hard-core aspect ratio (such as L/D=35). Here, liquid crys-
talline phases could be expected, but only if the charge on
the rods is small enough.
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APPENDIX A: THE PAIR INTERACTION
OF TWO CHARGED RODS

The pair interaction of two charged rods is given by Eq.
(2), where we assume that the electrostatic interaction is de-
termined by integrating over pairs of effective line-charge
elements interacting with the screened Coulomb potential.
The distance between these pairs is given by a superposition
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of the relative position of the rods and the combination of the
position of the line elements along both rods. Since the inte-
gral in Eq. (2) cannot be calculated analytically, we try to
simplify the calculation. By expanding the integrand in
spherical harmonics, we obtain terms that factorize into two
functions of the respective positions (using a special case of
the expression in Gradshteyn and Ryzhik [43] for imaginary
arguments, or the expression in Abramowitz and Stegun

[44])

Xl =Sl o PG i) forr s,
Ir—s| =0
o+
=472 2 k(n)Y,,[®)ils)Y) (), (A1)
1=0 m=-1

where i; and k; are the modified spherical Bessel functions of
the first and second kind, respectively. These functions are

given by
i(x) = \/glm/z(x), (A2)
2
ky(x) = \/;Kzn/z(x), (A3)

where I, and K, are the modified (cylindrical) Bessel func-
tions of the first and second kind, respectively. The Legendre
polynomials P; are expanded into spherical harmonics Y,
using the famous addition theorem. We use the notation
where r=|r, and t=r/r. Finally, the asterisk “*» denotes
complex conjugation. The unit vector as given in the argu-
ments of each of the spherical harmonic functions should be
interpreted as the two angles in spherical coordinates with
respect to an arbitrarily chosen reference frame. Since the
Legendre polynomials of the dot product of the two orienta-
tions are independent of this choice, so is the sum over m of
the product of the two spherical harmonics. The expansion
can be understood by the fact that the left-hand side is a
Green’s function in the case of linear screening and a van-
ishing potential at infinity. This Green’s function can be ex-
panded in Legendre polynomials such that it is the solution
of an infinite set of ordinary differential equations instead of
one partial differential equation. These equations exactly
yield the modified spherical Bessel functions.

We note that one could consider rewriting the expression
of the pair potential in rotational invariants (as used in Ref.
[40]). These are functions of three orientations, including a
sum over m of a product of three spherical harmonic func-
tions multiplied by Clebsch-Gordon coefficients. They form
a complete set of orthogonal functions dependent only on the
relative orientations of ¥, ®, and @' with respect to each
other. However, it turns out that in our case these are not
really helpful. Alternatively, one could consider a resumma-
tion of the expansion in spherical harmonics, such that each
term has a faster asymptotic decay than the previous term.
This is not the case here, since each Bessel function k; has
the same asymptotic decay as k [24].
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LTSN
—Lsin g

FIG. 8. Illustration of the domain of integration of the superpo-
sition of the positions of two line elements. The dashed circle of
radius r divides the parallelogram into two domains.

APPENDIX B: DOMAINS OF INTEGRATION

The integration over line elements of both rods in Eq. (2)
is in fact an integration with respect to the vector l®—1" @’
over a parallelogram-shaped area in the plane tangent to both
rod orientations. This area is illustrated in Fig. 8. There is a
straightforward choice for the reference frame and a substi-
tution of variables,

é:(cos Z,sin Z,O), (B1)
2 2
»' = (cos Z,— sin Z,O), (B2)
2 2
Id-1'd" =(pcos @,psin ¢,0), (B3)

where v is the angle between the two rod orientations. The
polar coordinates p and ¢ describe the same plane as / and I'.
These coordinates—where p is multiplied by the inverse
screening length « to make it dimensionless—replace the
vector s in the expansion (Al). Also, the coordinate r is
multiplied by «. The parallelogram can be cut up into four
equivalent pieces, keeping only the terms in the expansion
where / and m are both even. The integral boundaries of the
first quadrant (0 < ¢ < 7/2) satisfy

Lsin y

0=p = pax(®) (B4)

2 sin(@+ y/2)

It is important to note that the precise form of the expan-
sion of the integrant of Eq. (2) can vary as a function of p,
because k; and i; switch roles when p>r. We shall split the
result of our expansion into each order in / and m, to be
examined separately. We write

.

BV 6.6, = iy, 3, T D=

s Uy ’ > - B

. 1=0 m=—1 2,<l+m>!<l—m>!
1,m ‘even 2 9

X Az,m(V;’}’)Pl,m(COS 0)cos(m¢), (BS)

where P, are the associated Legendre functions. We have
used that for / and m both even
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Yl,m(e’ ¢) + Yl,—m(e’ ¢)
2

20+ 1 (I-m)!
=1/ i (l+m)!P,,m(cos O)cos(me), (B6)
and
1 k m % aa
5 Y/,m ﬁ=5’(’0 +Y/,—m 13:5’(’0

20+ 1 NU+m)(I=m)!

— (_ 1\U+m)2 mo).
=CD /\/ 4m l<l+m> (l—m) costmee)
2 ! !

2

2
(B7)

The expression for A;,(r;y) in Eq. (B5) is an integral over
the four equivalent quadrants of the product of two modified
spherical Bessel functions, together with cos(me). It is given
by

/2
Apn(rsy) = f de cos(me)B/(r;,y), (B8)

sin yJ,

where

Pmax(®)
By(r;,y) = k/(xr) f dppi (kp) (B9)
0

for r> pa(@), and

r Pmax(®)
Bi(r;@,y) = ki(kr) f dppi(kp) + i/(kr) J dppk(kp)
0 r

(B10)

for r<pmax(¢)~
Let us have another look at Fig. 8. The dashed circle

indicates the value for which the variables r and s in Eq.
(A1) switch (in this case r and s are replaced by «r and kp).
Consider the first quadrant (i.e., the upper right-hand corner).
Let us also assume y<<7r/2, such that cos(y/2)>sin(y/2).
In the end, we will calculate the effective excluded volume
for 0 < y<r, but this expression will turn out to be symmet-
ric in y< 77—y (due to up-down symmetry) so we need only
to consider the first half of this interval. The integral bound-
ary for p is given as a function of ¢ by the value of p on the
boundary of the parallelogram. However, the form of B;
changes when the boundary of the parallelogram intersects
with the circle of radius r. Therefore—depending on the
value of »—we have one to three domains for 5, as a func-
tion of ¢

T L sin vy
e |0,-], forr< ,
2 2

e [o,a<r>],[a<r>,ﬁ<r)],{Bm,ﬂ,

Lsin y

for <r<Lsin%/,
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Qe [O,a(r)],[a(r),g], for L sin g <r<Lcos g,

T Y
¢e|0,—|, forr>Lcos—,
2 2

where

siny\ vy
-, Bl11
r ) 2 ( )

L sin y) 0%

alr)= arcsin(

= (B12)

B(r)=m- arcsin( 5

are the angles for which the circle intersects the boundary of
the parallelogram. For each of the domains (i.e., subsets of
[0, /2]), there is a corresponding circle segment and a cor-
responding expression for 13,. If the circle segment lies in the
interior of the parallelogram, we must distinguish between
the interval where p is smaller than r and vice versa, and
therefore we use Eq. (B10). When the circle segment of this
domain lies outside of the parallelogram, we use Eq. (B9).
Since A, contains an integral of ¢ over the interval
[0,77/2], we split it into as many pieces as there are domains,
using the corresponding expression for the integrant B; in
each domain.

APPENDIX C: THE LIMIT FOR PARALLEL RODS

In principle, calculations of the effective excluded volume
for parallel rods involves the limit y— 0 of Egs. (B8)-(B12).
To obtain the correct result, one has to take care to perform
the limit correctly in each expression, which is not straight-
forward. It is much easier to re-evaluate the expressions in
this limit analytically, starting with Egs. (B1)-(B3). We use
the same reference frame, but a different substitution of vari-
ables

d)=(]‘70’0)’ (Cl)
(;‘\)’ = (1’070)’ (CZ)
16-1'd" = (*x,0,0), (C3)

where x=|[-1'|. Now the integration is performed over rela-
tive positions of two points on a single line. Half of the
combinations is positive (I>1'), the other half is negative
(I<1”). The integration boundaries of either set is given by

O0sx<L. (C4)

The length over which each combination /,!’ is realized, for
a certain value of x, is given by L—x. In accordance with the
previous expressions, we define the integral A, ,, for parallel
rods as

L
Apm(r;y=0) = 2k1(KF)J dx(L-x)ij(kx)  (C5)
0

for r>L, and
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A (r;y=0)= Zk,(Kr)f dx(L — x)i)(kx)
0

L
+ 2il(Kr)f dx(L - x)k)(kx)  (C6)

for r<L. Note that the expressions are independent of m.

APPENDIX D: NOTATIONS, INTEGRALS, AND TAYLOR
SERIES EXPANSIONS

In order to calculate the integral A,,, we first need to
calculate the integral 3, by performing the integration—with

ki(kr)Z)| K
KZB[(";(P,’}’)={ l( I") l[ pmax(‘P)]

Unfortunately, there is no (easy) way to write down the ex-
pressions in Egs. (D1) and (D2) explicitly for arbitrary /.
However, one can give explicit expressions (necessary for
our calculations) for /=0,2,4. First, the modified spherical
Bessel functions

w@=“%@, (D4)
L) = (22 + 3)sinh(2 -3z cosh(z) , (D5)

(z* +45z% + 105)sinh(z) — (102 + 105z)cosh(z)

is(2) = ,
4(2) ZS
(D6)
exp(-z)
ko(z) = ———, (D7)
(22 +3z+3)exp(-2)
kal2) = R (D8)
(z* +102% + 4522 + 105z + 105)exp(- 2)
ka(2) = S 22 (09)
Next, their integrals
Zy(z) =cosh(z) — 1, (D10)
h(z) — 3 sinh
7, = z cosh(z) — 3 sinh(z) ‘2, 11)
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respect to the radial coordinate p—in Egs. (B9) and (B10).
Because the calculations are rather intricate, we develop here
a short-hand notation to allow for relatively compact expres-
sions. Introducing the notation

ki(kr)Z(kr) + if(kr)IC(kr) — i)(kr) [ kpmax(@©)] for r < ppa(@).

Z
I(z) = f dxxiy(x), (D1)
0
Ki(z) = J dxxk(x), (D2)
4
we can rewrite 3, as
for r > ppu (@),
Prmax(®) D3)
|
(2% +35z)cosh(z) — (10z% + 35)sinh(z) 8
I4(Z) = 3 -5
Z 3
(D12)
Ko(z) =exp(-2), (D13)
7+ 3)exp(-z
foale) = XD (D14)
(2% + 102> + 35z + 35)exp(-z)
Ky(2) = 3 . (D15)
Unfortunately, we cannot perform the subsequent

integration—with respect to the angular coordinate ¢—in
Eq. (B8) analytically, when we try to calculate A, ,,. There-
fore, we use the series expansions (for even [)
~ (2n+ k)!Z2n+2k+2
IZn(Z) = 22"2 s
o 2n+2k+2)(4n+2k+1)k!

(D16)

,2m)* 1 2 (= DH2K) 122k
’CZn(Z) = (_ 1) (271)‘ - 2211% (21’1 Ok + 1)(2]1 _ k)'k'

©

1

)

o 2n+2k+1)(2n+k)!1(2k)!

o0

k!12n+2k+1

(2n + k) !Z2n+2k+2

+2% . D17
g(2n+2k+2)(4n+2k+1)!k! (D17)

Finally, we define the specific combination
C/(kr) = ki(kr)Z)(kr) + i)(kr)K)(kr), (D18)

which turns out to be given by a relatively simple expression
(for even 1),
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n

() (- D*(2n + 2k)!
Canlter) = (2n)!,§0 (n+ k) (n = k) (kr)*+!

n(Z”n!)z
-(=1 )] kon(kr), (D19)
such that
1 —
Cye) =1 - 2D (D20)
z z
-6 243243 -
C2(2)=Z - +2(Z + Z+%)exp( z), o21)
Z Z
4 2
z'—=20z"+ 280
C4(z)=z—5

8 (z* + 102 + 452 + 105z + 105)exp(- 2)
-3 = .

(D22)

Note that in each expression the first term cancels the diver-
gence of the second term in the limit where z— 0. Hence,
this limit is given by

2 kLk/(kr) T (kL)
KA (riy=0) =

Evaluation of these integrals result in slightly more compli-
cated expressions, when compared to the expressions for 7
and K in Egs. (D10)—-(D15),

Jo(z) = shi(z) + i - &h(z), (D28)
T2 = Lshi(g) - 2 4 LRI H ISR
2 Z 2z
3 8
Tu(2) = gshl(z) *3,
~ (3z* + 70y)cosh(z) — (52 + 70)sinh(z)
8z* ’
(D30)
where
shi(z) = f | dxsinh(x) , (D31)
0 x

is the hyperbolic sine integral.

I—
2—rC,(Kr) + 2kLk/(kr) T(kr) + 2kLi)(kr)[ L,(kr) — L(kL)] for r<L.
r
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C(0)=6,. (D23)

This property is also reflected in the series expansion—
useful for calculations for small kr—given by

n(2"n!)2
Cou(kr)=(=1) o)t
% \/_’i_T - 1 (—KV)k
2 o nfk+2n+3\ [k=2n+2\\ 2 /)~
I 2 I 2

(D24)

Note that the terms for even k<<2n have vanishing coeffi-
cients.

The limit of parallel rods has a different set of expres-
sions. Therefore, we define an additional notation

z—

i),

Jz) = f dx (D25)
0

Z

Li(z) = f ’ dx%kl(x). (D26)

In this way, we split each integral in Eq. (C6) in two parts

for r > L,
(D27)
[
exp(-2)
Ly(z)=T0,2) - ——, (D32)
£a0) =100+ IR )

(32° + 52% + 70y + 70)exp(- z)
8z* )

3
L4(z) = gF(O,z) -

(D34)

One now has the exact solutions for 4;,—in the case of
parallel rods—up to /=4. However, we need the expressions
in Egs. (D28)—(D34) to provide a well-defined limit for y
— 0, to use in combination with the expressions for arbitrary
orientations [i.e., the series expansions in Egs. (D16), (D17),
and (D19)]. Therefore, it will be convenient to also have
these expressions in the form of a series expansion,

©

j ( )_ 22n2 (2n+k)!z2n+2k+l
wE = o 2n+2k+ 1)2n +2k+2)(4n+2k+ 1)1k!’

(D35)
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L [ J L2l 1 (= DR
Lal2)=(=1) (2" v>2(“§k‘”€‘ln@)‘( D 2n)! z 22”,(:0,2,#” (2n - 2k)(2n — 2k + 1)(2n — k) k!
1 * k!Z2n+2k *

(21’1 + k)!Z2n+2k+1
_ —E ZnE

+2 . D36
22",(=1 2n+2k)2n+2k+1)2n + k)!(2k)! o Qn+2k+1)2n+2k+2)(4n+2k+ 1)!k! ( )

APPENDIX E: TRUNCATION AND SOME
EXAMPLES OF EXPRESSIONS

In principle, the calculation of each of the terms in Eq. (B5) (i.e., each order of / and m) involves an infinite series expansion
in kL. We will restrict our calculations to /=0, 2, and 4, and truncate each series expansion. Since the shape of the integration
domain of A, is a parallelogram with sides of length L, we divide out a factor L* to make both A4;,, and B; dimensionless
[i.e., we calculate k*A;,,/(xL)* and «*B;/(kL)?]. This factor L? is combined with the prefactor x/g\* in Eq. (B5). From the
definition of the charge parameter g, we can write the result as an overall prefactor g«*L?. The truncated expansion is defined
as the expansion up to fourth order in «L of the expression where this prefactor is taken out. This means that we determine the
series expansions of the expressions in Eqs. (D3) and (D27), after we divide by a factor (xL)>. We give some examples of the
calculated expressions for /=0 and m=0, where we explicitly make the distinction between four domains in 7. For r< M

4
Kon,o("; Y) = E’fo d‘P{CO(KV) - iO(Kr),CO[KpmaX((P)]}

27 (1 exp(=«r) sinh(kr)\ sinh(xr) , , y w—y\[ 2 «kLsin®y «’L3sin*y
=~ —|— = - + k°L”| —In{ tan — tan —+ +

sin)/ Kr Kr Kr Kr 4 wL 24 2560
373 272

I . kL . in2 ind )<L L
+1 + 2- — 4+l 4+ 16 -8 +2 -3 -1-

V1 +sin (2 —sin ) [+ VL +sin A sin y+ 2 sin” y— 3 sin 7)3840 36

A

—(7+5 o

(7+5 cos® 7)21600 o

The next domain is M <r<Lsin 1 , where the expression is a lot more involved, because the integration interval [0, 7/2]
is split into three pleces

4 a(kr) Blkr)
i< Ago(r;y) = m{ f de{Co(xr) — ig(kr)ICol kpmax(@) I} + f dko(kr) Lol kpmax(@)]
0 a(«r)
/2
o7 agten - i Kl put )
Blkr)
_ .4 (2 arcsin(é) - E)(i ~ exp(— kr) ~ sinh(xr))
sin 7y 2 )\ kr Kr Kr
inh - 2 kLsin? 3L sin* — L
+MK2L2 —ln(tanztanw 7)<—+K My e Y + V1 +sin y(2 —sin y)K—
Kr 4 4 KL 24 2560 12
3 3 272 414
/ L < KLW 2 Iy ( 2
+ 1+ 16 -8 +2 3 1 T+5 tanh(y1
V1 + sin ¢( sin y+ 2 sin® y - 3 sin’ 7)3840 36 ( cos? 7)21600 L arctanh(\1 — &)

2Kr 33 2r 5 33 5 22 5 4
g“ﬁ>—zvl (—+(3g +2)M_1_(2§ +1)——(8§4+4§ +3)5400>]

B 4
+ —‘”‘pfa <) K2L2[ - 52<1 +E+ 1)— +BE+48+ 3)%)] (E2)
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We have abbreviated .
Lsin y
==, (E3)
2r

This domain corresponds to the case where the circle of radius r intersects the edge of the parallelogram twice at each
quadrant. The following domain corresponds to the case where there is just one intersection per quadrant. Recall that we
assume 0 <y<<mr/2, such that this domain is given by L sin %< r<L cos %,

/2

al(kr)

4 1 exp(— sinh sinh 2 L sin’
= (arcsin(f) - Z)(—— p(= ) - (Kr)) + (xcr) K2L2[—ln(tan Z)(— + ey
sin y 2/)\kr 4

Kr Kr Kr KL 24

5/2 3713 2
L 1+ cos 1+ cos
) (7 -3 cos 'y)K - 7_( '}/)
960

4 a(kr)
< Ago(r;y) = E’{ f de{Co(kr) = ig(kr) Kol kpmax(@) ]} + f d<Pko(Kr)Io[KPmax(<P)]}
0

K3L3sin4y) (1+COS’}/>3/2KL (1+cosy
+ — 4| —

2560 2 6 2 2 2
212 (14 A
X(2-cos y) K36 - ZOS 4 (7 6 cos y+ 2 cos> y) 5200~ %arctanh(x 1- §2) — + 52 < g“ﬁ
AN -g2<—+(352 LSOy 1)——(8§4+4§2 3) ) exp(= Kr)K2L2
L 480 5400 Kr
1- 1- 212 (11— 3 ap4
X { ;OS )/+( Czos Y) (2 + cos y)K +( czos 7) (7 + 6 cos y+ 2 cos? *y);(400
22 4,4
—,1—2(1 221— 88 +48+3 ) E4
=8l 1+ e+ D5+ B8+ 48437 (E4)
Finally, the domain where r>L cos 3 yields a more friendly expression,
4 (™ exp(— kr) KL? KA
< Ago(rsy) =—— f deko(kn) Lo kpmax(@)] = —————K*L*| 1 + —— + (T + 5 cos’ 7) (ES)
sin yJ, Kr 36 21600

In the case of parallel rods, we can apply the alternative series expansions, or apply the limit y—0 on the last two
expressions above. Both yield the following approximations, where for r <L

KZA(),()(V; y=0)= 2L - r(i ~ exp(— Kr)) . 2KLexp(— Kr) <Shi(K}") . 1 ~ cosh(xr)) . 2KLsinh(Kr) (F(O,K}’) ~ exp(— kr)
r

Kr Kr Kr Kr Kr Kr Kr

-I'(0,xL) + exXp(= KL)) = 2L - r(i - —eXp(_ Kr)) + ZKL—eXp(_ K7) K—r<1 + ﬁ + e )
kL r \kr Kr 36 1800
sinh(kr) L 1 L-r «r kr Kt &K KL kL «’L*> L}
In{—|-— +—|1l-—+—-—+ -— -+ ——-—
kL r 2 6 36 240 1800 2 6 36 240

KL
" 1800)] ' (E6)

Kr 2

+2kL

Kr r

For r>L we obtain Likewise, there are expressions for /[=2,4. These are all
used together to create an (approximate) expression for the
exp(—kr) [ . 1 cosh(kL) pair interaction outside of the hard-core exclusion region. We

K2 Ao o(r;y=0)=2kL—— shi(kL) + — - ———— Leractic \ , \
0.0\ Y . «L use this pair interaction to numerically calculate the effective

so ara excluded volume. This is accomplished by a numerical inte-

- 2KLCXP(— Kr) K_L( KL” N K'L ) gration scheme over all different domains of r, for given rod
Kr 2 36 1800 orientations. Our approach is fundamentally different from

(E7) other theoretical work [24,25], in the sense that we apply the

interchange of the two positional vectors r and [®—1'®. We
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have to do this in order to calculate the full integral over r, in
contrast to the studies in Refs. [24,25], where only a descrip-
tion is given of the pair interaction for rods at large distances.

PHYSICAL REVIEW E 79, 041401 (2009)

Conversely, if one considers nonspherical charge distribu-
tions on spherical particles, this switch is not needed when
introducing rotational invariants.
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